Lipschitz approximations to summable functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz functions and fuzzy number approximations

We prove that some important properties of convex subsets of vector topological spaces remain valid in the space of fuzzy numbers endowed with the Euclidean distance. We use these results to obtain a characterization of fuzzy number-valued Lipschitz functions. This fact helps us to find the best Lipschitz constant of the trapezoidal approximation operator preserving the value and ambiguity intr...

متن کامل

Essential Supremum and Supremum of Summable Functions

Let D lR N , 0 < (D) < +1 and f : D ! lR is an arbitrary summable function. Then the function F() := R fx2D:f(x)g (f(x) ?) dd (2 lR) is continuous, non-negative, non-increasing, convex, and has almost everywhere the derivative F 0 () = ?f ]. Further on, it holds ess supf = supf 2 lR : F() > 0g, where ess supf denotes the essential supremum of f. These properties can be used for computing esssup...

متن کامل

Controlling Lipschitz functions

Given any positive integers m and d, we say the a sequence of points (xi)i∈I in Rm is Lipschitz-d-controlling if one can select suitable values yi (i ∈ I) such that for every Lipschitz function f : Rm → Rd there exists i with |f(xi)−yi| < 1. We conjecture that for every m ≤ d, a sequence (xi)i∈I ⊂ Rm is d-controlling if and only if sup n∈N |{i ∈ I : |xi| ≤ n}| nd =∞. We prove that this conditio...

متن کامل

Interpolation of Lipschitz functions

This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. Th...

متن کامل

Bandlimited Lipschitz Functions

We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolating and sampling sequences for this space. We also give a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 1964

ISSN: 0001-5962

DOI: 10.1007/bf02391009